1. Skip to Menu
  2. Skip to Content
  3. Skip to Footer

Эта странная реальность. Философские уроки естествознания

Форма наших представлений о мире постоянно изменяется. Умозрительным античным моделям Вселенной пришла на смену средневековая идея о мире как неизменном божественном творении. Возрождение расширило границы мира, сделав человека песчинкой мироздания и одновременно великим, способным охватить разумом всю Вселенную. В Новое время родился метод познания Природы, который до сих пор лежит в основе современной науки.

 

Успехи этого научного подхода, основанного на соединении опыта и логического вывода, были настолько впечатляющи, что породили иллюзию всемогущества человеческого разума. Наиболее яркое проявление самонадеянности человека видно в ответе П. Лапласа Наполеону — на вопрос императора, почему в его системе мира нет места Богу, он гордо заявил: «Я не нуждаюсь в этой гипотезе».

Однако открытия ХХ века показали, что ясность и отчетливость интерпретации опытных данных, основанные на логике и здравом смысле, не всегда могут быть достигнуты, если речь идет о явлениях природы, разыгрывающихся в масштабах, намного отличающихся от привычных для человека, — в мире явлений атомных или, наоборот, космических, охватывающих звезды, галактики и их скопления. Сейчас вновь на первый план выступают подходы, свойственные древней мудрости, сформулированные в учениях Гераклита, Будды, Лао-цзы… Нынешняя эпоха развития знаний о Природе и человеке имеет шансы стать временем возвращения к древней мудрости, временем, когда символический язык древних учений дополнится реальным содержанием научных исследований.

«Гипотез не измышляю»

С точки зрения философии Нового времени основными инструментами познания являются разум и опыт. Роль их в научном познании признавали как рационалисты, так и эмпирики, разница была лишь в степени важности того или другого. Примирил эти крайние позиции Исаак Ньютон; его работы создали ощущение полной ясности законов Природы. Он дал новый метод, основанный на достоверных принципах, выводимых из опытов путем индукции, а не на гипотезах, которые кажутся правдоподобными или выдвигаются по аналогии с устройством других явлений и процессов. «Hypotheses non fingo» («Гипотез не измышляю») — эта фраза стала его девизом, научным кредо. И хотя сам Ньютон был автором гипотез: корпускулярной теории света, эфира, дальнодействия, он считал их знанием второго плана, подчиненным природе явлений и в этом смысле «не вымышленным».

«Общие законы человеческого познания, проявившиеся и в открытиях атомной физики, не являются чем-то невиданным и абсолютно новым. Они существовали и в нашей культуре, занимая при этом гораздо более значительное и важное место в буддийской и индуистской философиях. То, что происходит сейчас, — подтверждение, продолжение и обновление древней мудрости»

Роберт Оппенгеймер

По словам американского физика Ричарда Фейнмана, классическая картина мира, созданная к началу ХХ века, рисовалась примерно так: есть трехмерная «сцена», называемая пространством, и все изменяется в среде, называемой временем. Элементы, выступающие на «сцене», — частицы (например, атомы), они обладают известными свойствами (например, инерцией: когда частица движется в какую-либо сторону, она делает это до тех пор, пока на нее не подействует сила). Сила — второй элемент; силы бывают двух сортов: взаимодействия (скрепляющая атомы в разных комбинациях) и силы, действующие на далеких расстояниях (например, тяготение). Закон, которым подчиняются силы и частицы, известен и довольно прост. Вопрос же о причинах такого поведения частиц и сил не задается — ответ на него неизвестен и находится вне сферы науки: она отвечает лишь на вопрос «как?», но не «почему?».

На штурм классической физики!

Но вот пришел век ХХ, и казавшееся столь прочным здание научного знания зашаталось и потребовало существенной перестройки.

В самом деле, классическая физика позволила единым образом объяснить движение тел на Земле и планет в космосе, тепловые явления, связала воедино магнетизм и электричество, навела порядок в оптике. Оставалось разобраться в законах излучения света: наблюдаемые эффекты никак не удавалось объяснить с классических позиций. Для спасения физики Макс Планк в 1900 году предположил, что электромагнитные волны (свет) излучаются порциями, он назвал их квантами. Так родилась одна из самых удивительных физических теорий — квантовая физика. Ее непривычность и странность превратилась в своего рода профессиональную легенду физиков: до сих пор остается актуальным высказывание Р. Фейнмана: «Квантовую механику нельзя понять, к ней можно только привыкнуть».

«Наша наука — греческая наука — основана на объективации, посредством которой она отрезала себе путь к адекватному пониманию Субъекта познания, разума. И я убежден, что это именно та точка, в которой наш ныне существующий способ мышления нуждается в коррекции, быть может, путем переливания крови восточной мысли»

Эрвин Шредингер

На начальном этапе реформ физика предстает этаким странным монстром: для создания моделей атома привлекалась ньютонова механика, но она всячески подправлялась не свойственными ей идеями квантования. Характерным примером такого полуклассического-полуквантового «кентавра» является планетарная модель простейшего атома водорода, предложенная Нильсом Бором. Она не могла, в частности, объяснить, как движется электрон при переходе с одной орбиты на другую, и не годилась для объяснения поведения более сложных атомов, даже атома гелия, отличающегося от водорода наличием двух электронов, движущихся вокруг ядра (атом водорода имеет только один электрон на орбите). Об исследованиях в области атомной физики Альберт Эйнштейн писал: «…все мои попытки объяснить эти новые явления были абсолютно безуспешны. Это напоминало ситуацию, когда почва уходит из-под ног, и не на что опереться».

Дальнейшие исследования показали, что даже движение частиц атома нельзя описывать в классических понятиях траектории (орбиты). Необходимость принципиально новой идеи стала ясна физикам. Но результирующая теория, соединившая непротиворечивым образом все наблюдаемые факты, была далеко не проста. Но что такое простота, как не приверженность привычке? Возможно, что и наши потомки с недоумением будут пожимать плечами, удивляясь нашему пристрастию к моделям классической науки.

Реальность квантового мира

Физическая картина мира состоит из нескольких частей. Во-первых, это экспериментальные данные. Во-вторых, математическая теория, которая формальным образом связывает условия и результаты наблюдения. И, наконец, третья часть — интерпретация, соединяющая эти эксперименты и теоретические построения в единую картину. Для квантовой картины мира эта интерпретация оказалась чрезвычайно непривычной. Может быть, с этим связано существование нескольких интерпретаций квантовой механики.

«Мы можем найти параллель урокам теории атома в эпистемологических проблемах, с которыми уже сталкивались такие мыслители, как Лао-цзы и Будда, пытаясь осмыслить нашу роль в грандиозном спектакле бытия — роль зрителей и участников одновременно»

Нильс Бор

Наиболее принятой в научном мире является так называемая копенгагенская интерпретация, связанная с именами Н. Бора и В. Гейзенберга. В соответствии с ней физический мир делится на две части — наблюдаемую и наблюдающую. Наблюдаемая часть является «истинно квантовой», ее примером могут служить атом, электрон и т. п. Наблюдающая система состоит из экспериментального оборудования и из одного или нескольких людей-наблюдателей. Свойства квантовых объектов проявляются только через показания классических приборов — только их мы можем интерпретировать в привычных нашему разуму понятиях. Квантовая реальность принципиально отлична от классической: в микромире многие привычные нам представления оказываются неверными. Чтобы хоть как-то прояснить для себя свойства квантового мира, нам приходится принимать, что приписываемые квантовой реальности классические свойства ведут себя странно. Например, мы говорим: «Электрон до измерения не имеет никакого положения» — и представляем его в образе волны: волна протяженна, она не имеет определенной координаты. Однако, взаимодействуя с «классическим» экраном, электрон оставляет след в виде точки — мы склонны интерпретировать это как обретение им физической характеристики, координаты. Но что произойдет с самим электроном в результате этого «измерения», неизвестно.

Итак, все сказанное выше приводит нас к мысли, что в основе наблюдаемой реальности лежит «невидимая» квантовая реальность, которая становится «видимой» в ходе взаимодействия наблюдаемой и наблюдающей частей рассматриваемой системы. Однако в реальных ситуациях эта система едина, ее разделение на «квантовую» и «классическую» весьма условно.

Наблюдатель или участник?

«Значительный вклад японских ученых в теоретическую физику, сделанный ими после Второй мировой войны, может свидетельствовать о некоем сходстве между философией Дальнего Востока и философским содержанием квантовой теории»

Вернер Гейзенберг

Одно из свойств квантовой реальности, кажущееся парадоксальным с позиций классической физики, связано с тем, что уточнение одной из характеристик квантового объекта при взаимодействии его с классическим прибором, то есть при измерении, сопровождается потерей точности в значении некоторых других. Так, например, уточнение координаты частицы в процессе ее взаимодействия с классическим прибором делает ее импульс (произведение массы на скорость) менее определенным; таким же свойством обладает время наблюдения системы и ее энергия и др. Такое странное с классической точки зрения положение Бор сформулировал как принцип дополнительности. По-видимому, адекватное описание явлений микромира требует использования разных «языков», дополняющих друг друга. Так, описание микрочастицы как точечного объекта отражает лишь часть его свойств, проявляющихся, например, при бомбардировке атомов. В других условиях (например, при прохождении через набор щелей) микрочастица проявляет свои волновые свойства. В результате возникает представление о квантовой частице как о некоторой скрытой реальности, ведущей себя по-разному в зависимости от способов взаимодействия с наблюдателем. По словам Нильса Бора, «изолированные материальные частицы — это абстракции, свойства которых могут быть определены и зафиксированы только при их взаимодействии с другими системами». Наблюдения в этой ситуации становятся очень похожими на рассматривание «теней на стене пещеры», описанных Платоном в диалоге «Государство». Этот миф другими словами пересказывают физики ХХ века. Так, например, Дэвид Бом считает: «…неделимое квантовое единство всей Вселенной является наиболее фундаментальной реальностью, а эти относительно независимые составные части только лишь частные единичные формы внутри этого единства».

Об этом же говорит и Дж. Уиллер, рассуждая о процессе наблюдения электрона как квантового объекта: «…в процессе измерения изменяется состояние самого электрона. После этого Вселенная никогда не станет такой, какой она была раньше. Чтобы описать то, что происходит, надо зачеркнуть слово «наблюдатель» и написать слово «участник»».

Что же дальше?

Чем больше мы знаем об устройстве мира, тем больше у нас имеется возможностей его изменить. К ХХ веку эти возможности столь расширились, а вера человека в свое могущество столь укрепилась, что это привело к целому ряду серьезных проблем. Вмешательство человека в природные процессы оказалось столь значительным, что многие ученые говорят о необратимости вызванных этим вмешательством изменений. По мнению Фритьофа Капры, автора целого ряда научно-философских книг, посвященных фундаментальным вопросам бытия, проблемы экологии, демографии, экономики, политики и т. п. являются разными гранями единого кризиса — кризиса представлений: решение основных проблем нашего времени существует, однако для этого требуется радикальный сдвиг в наших представлениях, устремлениях, ценностях. Может ли в этом помочь наука?

«Синергетика убедительно демонстрирует нам, что в самом фундаменте природы, как живой, так и неживой, заложен принцип инь-ян. Это принцип развертывания и свертывания, эволюции и инволюции, роста и вымирания, развития и угасания»

Сергей Павлович Курдюмов

Изучение квантовой реальности побудило физиков пересмотреть прежние знания. Титанические попытки свести к единой картине множество парадоксальных результатов привели к новому, более глубокому проникновению в природу материи и пониманию ее связи с человеческим сознанием.

Эстафету у физики переняли науки о живом. Целый ряд открытий в области генетики, молекулярной биологии, психологии и т. д. привел к необходимости рассмотрения понятия живого организма как сложной открытой системы, в которой единое целое превышает сумму своих составных частей — это свойство есть одно из проявлений нелинейности. Устойчивое существование сложных открытых нелинейных систем возможно в гармоническом равновесии между процессами разрушения и созидания. Подобные процессы формируют также и нашу планету, и общество. Подкрепленное математическими моделями нелинейной динамики, видение мира как целостности, пронизанной множеством взаимосвязей, породило в середине ХХ века новый подход, названный системным, или синергетическим, или холистическим — разные термины применяются различными научными школами, но по сути своей эти подходы идентичны. Изучение живых систем: организмов, частей организмов и сообществ организмов — и их связей с окружающей средой привело ученых к одному и тому же типу мышления, в основе которого лежат понятия связности, взаимоотношений и контекста.

Таким образом, революция в физике была началом более широкого процесса переосмысления мира и человека. Капра связывает его с образованием новой социальной парадигмы — холистической, или, более точно, экологической. Под социальной парадигмой он предлагает понимать «совокупность понятий, ценностей, представлений и практик, разделяемую сообществом и формирующую определенное видение реальности, на основе которой сообщество организует себя». Холистическая парадигма рассматривает исследуемую систему как определенное единое целое, экологическая включает и холистическую, однако добавляет к рассмотрению еще и развитие ее во времени и связь со всей природой, человеком и обществом. Такая парадигма рождает новые подходы, предлагая, например, в области мышления тенденцию к интуитивному вместо рационального, акцент на синтез, а не на анализ, целостное видение явления или объекта вместо попыток свести их к простому набору элементарных составных частей. Это рождает такие ценности, как кооперация и партнерство вместо конкуренции и господства, консервация и ограничение вместо экспансии.

PS: Дзэнские коаны физики

Классические представления о мире как о здании, построенном из блоков (молекул), состоящих из более мелких элементов (атомов), которые, в свою очередь, состоят из еще более мелких и т. п., с какого-то масштаба становятся неадекватными. Действительно, эксперименты свидетельствуют, что «мелкие» электроны, движущиеся с большими скоростями, при столкновении могут «разбиваться» как на менее мелкие (по массе), так и на более крупные частицы! Однако этот эксперимент полностью соответствует другой «неклассической» ветви физики, рожденной в начале ХХ века, — теории относительности, согласно которой масса тела и энергия эквивалентны и могут рассматриваться как разные проявления единой реальности.

В классической физике время отделено от пространства, оно течет во всех точках одинаково и не зависит ни от способа его измерения, ни от окружения. Однако попытка ответить на детский вопрос: «А как будет выглядеть луч света с точки зрения человека, движущегося рядом с ним со скоростью света?» — привел Эйнштейна к полному пересмотру этих представлений. Основываясь на экспериментальном факте, что скорость света не зависит от движения источника света, и постулировав ее постоянство для всех наблюдателей, он создал специальную теорию относительности, в которой возникло единое пространство-время, в котором и временные интервалы, и последовательность событий для разных наблюдателей могут выглядеть по-разному. Одним из следствий этой теории является то, что часы в самолете идут медленнее часов на земле, и это согласуется с экспериментом. Другим, не менее ошеломляющим следствием является эквивалентность массы и энергии.

В общей теории относительности свойства пространства-времени оказываются связанными с распределением материи. Гравитация в ней проявляется как искривление времени и пространства: линии, по которым движется «тело, предоставленное самому себе», теперь не являются прямыми, как в классическом евклидовом пространстве.

В целом, то, что стало происходить в физике начиная с ХХ века, очень напоминает дзэнский коан, предназначенный для того, чтобы заставить ученика мастера дзэн усомниться в истинности своих стереотипных представлений о мире и проникнуть в его суть, отвлечь свое внимание от наблюдений за игрой Майя — Великой иллюзии, скрывающей Истину.

 

Физика и философская традиция

Параллели между физическими представлениями и мироустройством, описанным в древних философских текстах (веды, упанишады, «Дао дэ цзин» и т. п.), отмечали выдающиеся физики ХХ столетия. В качестве примера приведем высказывания Н. Бора, Р. Оппенгеймера, В. Гейзенберга, Э. Шредингера — творцов современной физической картины мира.

Таким образом, вступив в третье тысячелетие, мы уже на научной основе приходим к взглядам на мир, подобным тем, что принимались в различных философских течениях, долгое время отвергавшихся наукой как «мистические» в плохом смысле этого слова, то есть как выдуманные, не опирающиеся на реальный опыт. Среди таких учений — философия античности (Греции и Рима), восточного мира (индуизм, буддизм, учение Лао-цзы и др.). Сегодня эти учения и их символический язык получают новое наполнение благодаря науке. Наука и философия получили возможность объединения для решения насущных проблем современности.

Неклассический микромир

кристаллВ 1887 году немецкий физик Г. Герц обнаружил, что под действием света вещество может испускать электроны. По классическим представлениям, чем больше амплитуда волны, тем больше ее энергия и тем больше электронов она должна выбивать.

В экспериментах же все было не так: электроны выбивались только светом с частотой выше пороговой, а свет сколь угодно большой интенсивности, но с частотой ниже порога никаких электронов вообще не выбивал. Это странное поведение света теоретически объяснил А. Эйнштейн в 1905 году. Он предположил, что свет не только испускается, но и распространяется порциями (квантами), названными позднее фотонами и имеющими свойства частиц.

Корпускулярные свойства света проявились и в эффекте А. Комптона (1922): оказалось, что свет может рассеиваться электронами, при этом и электрон, и свет ведут себя подобно абсолютно упругим шарикам. Итак, «сумасшедшая природа» придает свету то свойства волны, то частицы в зависимости от условий его регистрации.

В 1924 году Луи де Бройль предположил, что такие свойства характерны не только для света, но и вообще для всех объектов микромира. Эта идея была блестяще подтверждена в опытах, в которых электроны, всегда считавшиеся «частицами», огибали препятствия, подобно волнам.

Еще один парадокс, расшатавший основы классической физики, — невозможность объяснения структуры атома. В 1886 году было открыто явление радиоактивности, через год открыт электрон, а в 1911 году благодаря опытам Резерфорда обнаружено, что атом состоит из необычайно малого ядра и вращающихся вокруг него электронов. Чтобы представить себе соотношение размеров ядра (10-13см) и атома (10-8 см), увеличим атом до размеров комнаты, тогда ядро будет едва заметной точкой. Чтобы не падать на ядро, электроны должны с сумасшедшей скоростью вращаться вокруг него. Но вращаясь, электрон испытывает ускорение (направленное к центру орбиты), а ускоряющиеся частицы, согласно законам классической электродинамики, непрерывно излучают электромагнитную волну, а значит, теряют энергию. Электроны должны практически мгновенно (за 10-11 секунды) упасть на ядро! Для объяснения устойчивости атомов было предложена еще одна «квантовая» идея: излучение электрона в атоме может происходить только дискретными порциями. Развитие этой идеи позволило описать частоты линий спектра электромагнитных излучений веществ.

Физика и сознание

формулаОдин из важнейших вопросов, возникающих в связи со свойствами измерения квантовых состояний, заключается в выяснении роли наблюдателя (или его сознания) в ходе измерения. Совсем недавно, в начале XXI века, группа исследователей из Венского университета (А. Цайлингер и др.) провела эксперименты на молекулах фуллерена, «нагреваемых» в процессе полета лазерным лучом так, что они могут излучать свет и тем самым обнаруживать свое место в пространстве. В результате фуллерены значительно теряли свои свойства «огибать препятствия» — тем самым было показано, что роль наблюдателя способна выполнять окружающая среда: одна только принципиальная возможность обнаружить положение фуллерена себя изменяла исход эксперимента. Однако роль наблюдателя теперь состоит в создании условий эксперимента — в данном случае в нагреве фуллерена лазером, и в зависимости от «способа вопрошания» природы, она дает тот или иной ответ.

Квантовое единство мира

До измерения частица не обладает определенными физическими характеристиками. Но может быть, их можно вычислить на основании косвенных наблюдений? Для ответа на этот вопрос предлагались различные схемы мысленных экспериментов. Один из них привел к парадоксу Эйнштейна-Подольского-Розена, названного по именам физиков, размышлявших об интерпретации квантовой механики.

Мы привыкли, что каждое событие имеет свою причину: например, разбитая ваза на полу возникла потому, что ее откуда-то бросили или столкнули, причем сначала ее столкнули, а потом она разбилась. От момента действия причины (толчок вазы) до следствия (ее разбития) обязательно должно пройти какое-то время, затрачиваемое на преодоление пространства, разделяющего причину и следствие. Однако в квантовом мире все не так просто — следствие может наступить одновременно с причиной, как бы далеко одна от другой они ни находились.

Приведем пример. Известно, что среди характеристик светового фотона есть свойство, называемое поляризацией — оно связано с направлением колебаний векторов электромагнитного поля, носителем которого является фотон. Точно предсказать направление поляризации испущенного атомом фотона невозможно, можно указать лишь вероятность той или иной поляризации. Однако в некоторых ситуациях можно добиться, чтобы атом испускал два фотона одинаковой поляризации, но неизвестного направления. Как следует из сказанного выше, фотон не имеет определенной поляризации (классической характеристики), пока не взаимодействует с наблюдателем. Однако измерение поляризации одного из фотонов позволит в то же мгновение определить и поляризацию другого. Так ли это? Ведь если это так, то второй фотон мгновенно «узнает» об измерении, проведенном с первым, как бы далеко они ни разлетелись. Проверка этих рассуждений стала возможна лишь в 1964 году, когда Джон Белл предложил формулировку парадокса Эйнштейна-Подольского-Розена, допускающую непосредственную экспериментальную проверку. Эксперимент был поставлен в 1982 году, и он показал, что мир действительно таков, что в нем одна частица «чувствует» измерения, проведенные над второй, и мгновенно обретает значение поляризации. Парадоксальность этого вывода заставила физиков многократно повторять этот эксперимент в разных вариантах, совершенствуя методики, в надежде обнаружить ошибку, но вывод остается прежним: наш мир не есть набор локальных атомов-«кирпичиков», пусть даже и связанных последовательно между собой; он сам по себе — единое целое, и то, что происходит в одной его части, мгновенно меняет его в целом.

 

Понравился материал? Поделитесь, пожалуйста, ссылкой в социальных сетях:

Комментарии   

 
# RE: Эта странная реальность. Философские уроки естествознанияvvkarelin 06.09.2013 13:34
Классные цитаты, спасибо!
Ответить
 

Добавить комментарий

Защитный код
Обновить

Реклама


Купить журнал

Новости

Далай Лама запускает вебсайт – навигатор по человеческим эмоциям

В своем непрестанном стремлении повысить самоосознавание людей и распространить сострадание среди людей всего мира, Его Святейшество Далай-лама совместно с американским психологом Полом Экманом, наиболее известным, пожалуй, по его работе над мультфильмом «Головоломка», решил начать работать над тем, что Его Cвятейшество назвал онлайн «карта ума».

Подробнее...

Ученые выяснили, как скарабей ориентируется по звездам

Исследователи выяснили принцип ориентации жуков-навозников по звездам. В этом им, согласно новому исследованию, помогает особый «танец», который эти насекомые исполняют на навозном шарике.

Подробнее...

Мобильная версия сайта журнала «Человек без границ»

Сайт журнала «Человек без границ» стал по-настоящему мобильным. Читайте любимые материалы, ищите необходимую информацию и комментируйте понравившиеся вам статьи прямо с ваших мобильных устройств. 

Подробнее...

Комментарии

Форма входа

Здесь вы можете подписаться на электронную версию журнала, чтобы раз в месяц получать анонсы новых статей и новости о самых интересных событиях в науке и культуре, произошедших в мире за месяц. Подписка является бесплатной.
bdb-mebel.ru
inzuro.ru
Go to Top